Simulation of spin field effect transistors: Effects of tunneling and spin relaxation on performance

نویسندگان

  • Yunfei Gao
  • Tony Low
  • Mark S. Lundstrom
  • Dmitri E. Nikonov
چکیده

A numerical simulation of spin-dependent quantum transport for a spin field effect transistor is implemented in a widely used simulator, nanoMOS. This method includes the effect of both spin scattering in the channel and the tunneling barrier between the source/drain and the channel. Accounting for these factors permits setting more realistic performance limits for the transistor, especially the magnetoresistance, which is found to be lower compared to earlier predictions. The interplay between tunneling and spin scattering is elucidated by numerical simulation. Insertion of the tunneling barrier leads to an increased magnetoresistance. Simulations are used to explore the tunneling barrier design issues. © 2010 American Institute of Physics. doi:10.1063/1.3496666

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ballistic (n,0) Carbon Nanotube Field Effect Transistors' I-V Characteristics: A Comparison of n=3a+1 and n=3a+2

Due to emergence of serious obstacles by scaling of the transistors dimensions, it has been obviously proved that silicon technology should be replaced by a new one having a high ability to overcome the barriers of scaling to nanometer regime. Among various candidates, carbon nanotube (CNT) field effect transistors are introduced as the most promising devices for substituting the silicon-based ...

متن کامل

Analysis and study of geometrical variability on the performance of junctionless tunneling field effect transistors: Advantage or deficiency?

This study investigates geometrical variability on the sensitivity of the junctionless tunneling field effect transistor (JLTFET) and Heterostructure JLTFET (HJLTFET) performance. We consider the transistor gate dielectric thickness as one of the main variation sources. The impacts of variations on the analog and digital performance of the devices are calculated by using computer aided design (...

متن کامل

Analysis and study of geometrical variability on the performance of junctionless tunneling field effect transistors: Advantage or deficiency?

This study investigates geometrical variability on the sensitivity of the junctionless tunneling field effect transistor (JLTFET) and Heterostructure JLTFET (HJLTFET) performance. We consider the transistor gate dielectric thickness as one of the main variation sources. The impacts of variations on the analog and digital performance of the devices are calculated by using computer aided design (...

متن کامل

Non-equilibrium spin accumulation in ferromagnetic single-electron transistors

We study transport in ferromagnetic single-electron transistors. The non-equilibrium spin accumulation on the island caused by a finite current through the system is described by a generalized theory of the Coulomb blockade. It enhances the tunnel magnetoresistance and has a drastic effect on the time-dependent transport properties. A transient decay of the spin accumulation may reverse the ele...

متن کامل

Modeling of spin metal-oxide-semiconductor field-effect transistor: A nonequilibrium Green’s function approach with spin relaxation

A spin metal-oxide-semiconductor field-effect transistor spin MOSFET , which combines a Schottky-barrier MOSFET with ferromagnetic source and drain contacts, is a promising device for spintronic logic. Previous simulation studies predict that this device should display a very high magnetoresistance MR ratio between the cases of parallel and antiparallel magnetizations for the case of half-metal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010